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Abstract—Communication data rate and energy constraints are
important factors which have to be considered when investigating
distributed coordination of multi-agent networks. Although many
proposed average-consensus protocols are available, a funda-
mental theoretic problem remains open, namely, how many bits
of information are necessary for each pair of adjacent agents
to exchange at each time step to ensure average consensus? In
this paper, we consider average-consensus control of undirected
networks of discrete-time first-order agents under communication
constraints. Each agent has a real-valued state but can only
exchange symbolic data with its neighbors. A distributed protocol
is proposed based on dynamic encoding and decoding. It is proved
that under the protocol designed, for a connected network, av-
erage consensus can be achieved with an exponential convergence
rate based on merely one bit information exchange between each
pair of adjacent agents at each time step. An explicit form of
the asymptotic convergence rate is given. It is shown that as the
number of agents increases, the asymptotic convergence rate is
related to the scale of the network, the number of quantization
levels and the ratio of the second smallest eigenvalue to the largest
eigenvalue of the Laplacian of the communication graph. We also
give a performance index to characterize the total communication
energy to achieve average consensus and show that the minimiza-
tion of the communication energy leads to a tradeoff between the
convergence rate and the number of quantization levels.

Index Terms—Average-consensus, communication energy, data
rate, distributed consensus, distributed coordination, distributed
estimation, multi-agent systems, quantization, sensor network.

1. INTRODUCTION

ISTRIBUTED consensus and average-consensus prob-
lems have attracted great interests in recent years. Many
distributed control and estimation strategies are designed based
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on consensus algorithms ([1], [2]). The study of distributed con-
sensus is closely related to an essential issue of the complexity
science: how can local communications and cooperations
among individuals lead to certain desirable global behaviors?

The average-consensus problem originated from distributed
computation and decision-making, which usually means to de-
sign a network protocol such that, as time goes on, the states of
all agents asymptotically reach the average of the initial states.
In the 1980s, Tsitsiklis [3] and Tsitsiklis et al. [4] studied the
consensus problem and proposed weighted-average protocols.
Thereafter, Jadbabaie [5] studied similar protocols motivated by
biological group behaviors and stirred the excitement of the re-
search on distributed cooperative control in the control commu-
nity. From then on, many valuable results ([6]-[10]) have ap-
peared. However, most of the works in the literature assume that
each agent can obtain the exact state information of its neigh-
bors through local communications. When the states of agents
are real-valued, this assumption is equivalent to the requirement
that the communication channels between agents have unlimited
capacity (bandwidth). It is well known that in real digital net-
works, communication channels have a finite channel capacity,
thus, at each time step, agents can only transmit a finite amount
of information to their neighbors. The communication between
different agents can be viewed as such a process: At each time
step, the sender encodes the quantized state and sends out the
code. When the neighbors receive the code, they use a decoding
algorithm to obtain an estimate of the sender’s state. Thus, quan-
tization plays an important role in information exchange among
agents. Therefore, consensus problems based on quantized com-
munication become interesting and more meaningful.

Kashyap et al. ([11], [12]) and Nedic er al. ([13]) designed
average-consensus algorithms based on the assumption that the
states of agents are integer-valued. These algorithms can drive
each agent to some interger approximation of the average of the
initial states. Carli et al. and Frasca et al. ([14]-[17]) and Kar
and Moura ([18]) studied the average-consensus problem with
real-valued states based on quantized communication. Carli et
al. ([14]-[16]) proposed algorithms with a uniform quantizer of
infinite levels to ensure the boundness of the consensus error
and gave an error bound in terms of the system parameters.
Furthermore, an algorithm based on dynamic quantization to
ensure average consensus was developed in Carli et al. ([17]).
The number of quantization levels, however, will increase as the
number of agents increases no matter how the control parame-
ters are chosen. Kar and Moura ([18]) added a random dither
to the sensor state before quantization to make the quantization
error a “white” noise. By a distributed stochastic approximation
method ([19]-[23]) and pathwise analysis, it was proved that,
for an infinite-level quantizer, consensus can be achieved with
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probability 1, while for a finite-level quantizer, the states of all
agents will eventually enter into a small neighborhood of the
average of the initial states with high probability. More relevant
results with dithered quantizers can be found in [24] and [25].

It is well known that for feedback control of single-agent
systems with communication constraints, Tatikonda and Mitter
([26]) and Nair and Evans ([27]) gave the minimal bit rate
(channel capacity) for stabilizing a linear time-invariant system
and the case with a logarithmic quantizer was considered by
Elia and Mitter ([28]) and Fu and Xie ([29]). For distributed
cooperative control problems of multi-agent systems under
communication constraints, though various kinds of algorithms
have been proposed as mentioned above, some fundamental
theoretic problems remain open. For example, to achieve con-
sensus of the whole network, how many bits of information
does each pair of adjacent agents need to exchange at each time
step?

In this paper, we consider the average-consensus control for
discrete-time first-order undirected networks under communi-
cation constraints. Each agent has a real-valued state but can
only exchange symbolic data with its neighbors. The commu-
nication between agents is based on dynamic encoding and de-
coding with finite-level quantization. We design a distributed
protocol with error compensation. The protocol is characterized
by three parameters: the control gain, the scaling function, and
the number of quantization levels.

We show that if the network is connected, then for any given
uniform quantizer with finite levels, the control gain and the
scaling function can be chosen properly such that under the pro-
tocol designed, the average state of the whole network is pre-
served and the deviation between the state of each agent and
the average state of the whole network converges to zero expo-
nentially. In particular, it is shown that the control parameters
can be properly chosen such that the average consensus can be
achieved by using a single-bit quantizer. This indicates that no
matter how large a network is, as long as it is connected, we
can always design a distributed protocol to ensure asymptotic
average consensus with an exponential convergence rate using
merely one bit information exchange between each pair of ad-
jacent agents at each time step.

We also analyze the relationship between the convergence
rate and the number of quantization levels, and show that under
the protocol designed, faster convergence requires more bits for
quantization. We give a performance index to characterize the
total communication energy to achieve average consensus and
show that the minimization of the communication energy leads
to a tradeoff between the convergence rate and the number of
quantization levels.

Our proposed consensus algorithm has potential applications
in the distributed estimation over sensor networks, where the
number of nodes is often large. This motivates us to investigate
asymptotic properties as the number of nodes N approaches
infinity. We show that in some sense, the asymptotic con-
vergence rate is O(exp{—(KQ%/(2V/N))t}) when using
a (2K + 1)-level quantizer, where @y is the ratio of the
second smallest eigenvalue (algebraic connectivity) to the
largest eigenvalue (spectral radius) of the Laplacian matrix
of the topology graph. The ratio () is an important physical
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quantity reflecting the synchronizability of a network ([30]).
Our result shows that the convergence rate of distributed con-
sensus depends not only on the connectivity but also on the
synchronizability of the communication graph for a given finite
communication data rate.

The remainder of this paper is organized as follows. In Sec-
tion II, we present the model of the network, propose a dis-
tributed protocol, and formulate the problem to be investigated.
In Section III, we prove that under the protocol designed and
some mild conditions, average consensus can be achieved with
an exponential convergence rate. Then we analyze the asymp-
totic performance as N — oo and give an explicit form of the
asymptotic convergence rate. In Section IV, we give a perfor-
mance index to characterize the total communication energy
cost to achieve average consensus. In Section V, we consider
how to select the control parameters for an important class of
complex networks called expander networks. In Section VI, we
give some concluding remarks and future research topics.

The following notation will be used throughout this paper: 1
denotes a column vector with all ones. I denotes the identity
matrix with an appropriate size. For a given set S, the number
of its elements is denoted by |S|. For a given vector or matrix
A, its transpose is denoted by A7, its co-norm is denoted by
||A]|oo, and its Euclidean norm is denoted by || A||2, its trace is
denoted by tr(A). For a given positive number z, the natural
logarithm of z is denoted by In(z), the logarithm of : with base
2 is denoted by log, (), the maximum integer less than or equal
to z is denoted by |z|; the minimum integer greater than or
equal to z is denoted by [z]. For a given random variable X,
the mathematical expectation of X is denoted by E[X].

II. PROBLEM FORMULATION

A. Average-Consensus Problem

In this paper, we consider the average-consensus control for
a network of agents with the dynamics
xi(t—l—l):xi(t)—{—hui(t)7 t=20,1,...
where x;(t) € R and u;(t) € R are, respectively, the state
and input of the 7th agent, and A is the control gain. The com-
munications between different agents are modeled as an undi-
rected graph G = {V, &, A}, where V = {1,2,..., N} is the
set of nodes with ¢ representing the ith agent, £ is the set of
edges and A = [a;;] € RV*Y is the weighted adjacency ma-
trix of G. Note that A is a symmetric matrix. An edge denoted
by the pair (j,¢) represents a communication channel from j
to ¢ and (4,7) € & if and only if (i,5) € . The neighbor-
hood of the ith agent is denoted by N; = {j € V|(1,5) € £}.
For any 4,57 € V, a;; = aj > 0, and a;; > 0 if and only
if j € N;. Also, deg; = Zj\;l a;; is called the degree of 1,
and d* = max; deg; is called the degree of G. A graph G is
called d-regular, if |N;| = d,i = 1,2,...,N, where d > 0
is a constant and a;; = 1, (¢,j) € &. For a d-regular graph,
the degree of all nodes is d. The Laplacian matrix of G is de-
fined as £L = D — A, where D = diag(deg;,...,degy). The
Laplacian matrix £ is a symmetric positive semidefinite ma-
trix and its eigenvalues in an ascending order are denoted by
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0=M(L) <X(L) < ... < An(L), where Ay (L) is the spec-
tral radius of £ and Ay (L) is called the algebraic connectivity of
G ([31]). A sequence of edges (i1,72), (i2,%3), .. ., (ik—1, %) is
called a path from node 7; to node 7. The graph G is called a
connected graph if for any 7, j € V, there is a path from ¢ to j.

The dynamic system (1) together with the communication
graph G is usually called a dynamic network ([6]). A group of
controls Y = {u;,4 = 1,2..., N} is called a distributed pro-
tocol if for all 4, u;(¢) only depends on z;(s) and z(s), j € N;,
s < t. The so-called average consensus control means designing
adistributed protocol for the dynamic network, such that for any
initial values o1 (0),...,2n(0), the states of all agents converge
to (1/N) ZJ 12;(0) as t — oo. That is, (1/N) ZJ 1 2;(0)
can be computed asymptotically in a distributed way.

B. Protocol Design

In [6], a weighted-average protocol was proposed

> aij (m(t) — wi(t)),

JEN;

wi(t) = t=0,1,...,

i=1,2,...,N. (2

In (2), the :th agent needs the exact state information of its
neighbors. In this paper, we assume that the exact state informa-
tion is not available, but only symbolic data can be exchanged
between agents, and the communication channels are modeled
as noiseless digital channels each with a pair of encoder and de-
coder. The encoder ®; of the jth agent is given by

£i(0) =
§(t) = (t — DA;(t) +&5(t - 1),
Ai(t) = a (5555 (o) = &= 1)), =12,
3)

where £;(¢) is the internal state of ®;, and A;(¢), which is the
output of ®;, is sent to the neighbors of the jth agent. Here,
q(+) is a finite-level uniform quantizer, and g(¢) > 0 is a scaling
function.

The quantizer ¢(-): R — T is a map from R to the set of quan-
tized levels I'. In this paper, we consider a finite-level uniform
symmetric quantizer with

I'={0,4i,i=12,.. K}

The number of quantization levels is 2K + 1. The associated
quantizer ¢(-) is given by

0, -1/2<y<1/2,
B 2ol <y< 2 i=1,2,..., K -1
q(y)= K, >2K 17
_q(_y)7 Y= < _1/2

“)

Remark 1: The encoder ®; is a difference encoder with
scaling, and £;(t) is a one-step predictor. In this difference
coding algorithm, what is quantized at each time step is a
“prediction error”, ;(t) — £;(t — 1), rather than the state z ;(¢).
Intuitively speaking, the amplitude of the prediction error is
smaller than that of the state itself, so it can be represented by
fewer bits. (]

Remark 2: 1f consensus is achieved asymptotically, then the
prediction error x;(t) — &;(t — 1) tends to zero as t — oc.
Therefore, intuitively the scaling function g(¢) should have the
following properties. On one hand, ¢(t) should decay gradually
to make the quantizer persistently excited, such that the agents
receive the information from their neighbors continuously. On
the other hand, g(¢) should be large enough such that the quan-
tizer will not be saturated. O

Remark 3: The quantizer is implemented using the following
strategy: when the output A (¢) of the quantizer is zero, the jth
agent does not send any information, so for a (2K + 1)-level
quantizer ¢(-), the communication channel (j,4), ¢ € N is re-
quired to be capable of transmitting [log,(2K)] bits without
error at each time step. In particular, the quantizer ¢(-) given by

0, -1/2<y<1/2,
ay) =41, y=21/2, )
_17 Y < _1/2
is a one-bit quantizer. O

For each communication channel (j,7) € &, the ith agent
receives A;(t), and then uses the following decoder U ;; to es-
timate z;(¢):

2,:(0) = 0,
{asﬁ(f) — gt =)0 () + 75t 1), t=1,2,... ©

where Z;;(t) is the output of W ;.

Remark 4: The proposed encoder (3) and decoder (6) both
require memory. Some related work on the exploitation of
memory to speed up the convergence of distributed consensus
can be found in [33]. O

We propose a distributed protocol as

wi(t)=Y aij (Fi(H)=&(t), t=0,1,..., i=1,2,...N,
JEN;
(7
Denote
X(t) = [ (?),- an(0)
X(t) =[G, en®]"
e(t) =X (t) — X(1),
6(t) = X(t) — InX(t) ®)

where Jy = (1/N)117.
Remark 5: 1f &;(t) is replaced by z;(¢), then the protocol (7)
becomes

wilt) = Y aij (i(t) —wi(t), t=0,1,...,
JEN;

1=1,...,N. (9)
The protocol (9) is a natural extension of the protocol (2) to the
case with quantized communications and it has some computa-
tional advantage over the protocol (7). One may wonder why we
use the protocol (7) rather than the protocol (9). We give some
explanations below.

From (3) and (6), it follows that:

’iGNj, 7=12...,N.

(10)
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Thus, the internal state &;(¢) of encoder ®; is equal to the esti-
mates of z;(t) by its neighbors. By the symmetry of A and (10),
the protocol (7) can be rewritten as

wit) = D aijw;(t) - wi(t)
= (a5(t) - Bu() + (za(8) — £(0))]
= 2 ol = (0] = 3 i lay(0) — B0
+ Z aji [v:(t) — 45 (1) (11)

It can be seen that, in our protocol (7), the control input of the +th
agent consists of three terms. The firstterm, } -, v a45[7;(t) —
x;(t)], which is just the control input of the protocol (2), plays
the main role. The second term, — 3. v a;;[2;(t) — Zj:(1)],
represents the weighted sum of estimation errors for the neigh-
bors’ states x(t), j € N;. The last term 3 n aji[z:(t) —
Z;j(t)] is the weighted sum of estimation errors for z;(¢) by the
neighbors.

The last term in (11), which we call an error-compensation
term, plays an important role in our protocol. Substituting the
protocol (3), (6) and (7) into the system (1) leads to

X(t+1) = (I — hL)X (1) + hLe(t),
X(t+1)=gt)Q <7X(t+gl()5)?(t)> +X(t) (12)
where Q([y1,---,yn]T) = [q(v1),---,q(yn)]T. From the

above, noting that Jy £ = 0, we have

NZz]t—f—l NZ&:]

It can be seen that the closed-loop system preserves the average
state under the protocol (7). If the error-compensation term is
removed, then by (11), the protocol (7) reduces to the protocol
(9), and the closed-loop system becomes

X(t+1)=({I - hL)X(t) — hAe(t). (14)
Generally speaking, the closed-loop system (14) does not pre-
serve the average state, and worse still, it can be shown that the
closed-loop system (14) may be divergent if e(¢) is a bounded
white noise ([34]). That is why we use the protocol (7) rather
than the protocol (9). Indeed, a similar error compensation ap-
proach has been considered in [14] and [15]. O

II. FINITE-LEVEL QUANTIZED CONSENSUS

For the protocol designed and the resulting closed-loop
system (12), the following questions are naturally put forward:

Questions: Can the whole network achieve consensus with
finite-level quantized communication? If so, how many bits are
necessary for each pair of adjacent agents to exchange at each
time step? What is the relationship between the convergence
rate and the control gain, the scaling function and the number
of quantization levels?

In this section, we will answer the above questions.
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A. Convergence Analysis

We make the following assumptions:
A1) G is connected.
A2) max; |z;(0)| < C,, max; |6;(0)| < Cs, where C,, and
Cs are known nonnegative constants.
To get the main results (Theorems 3.1 and 3.3), we need the
following lemma.
Lemma 3.1: Tf Assumption Al) holds and h < 2/An (L),
then p;, < 1, where

ph = max |1 —hX(L)]. (15)

Furthermore, if h < 2/(A2(L) + An (L)), then pp, = 1 —
hXa(L).

Proof: It follows directly from the properties of graph

Laplacian ([32]), and the details are omitted. O

Theorem 3.1: Suppose Assumptions Al)-A2) hold. For any
given h € (0,2/An (L)) and v € (pp, 1), let

Ki(h) = [ M) - 3| +1 (16)
VNR*X3.(L) 1+ 2hd*

My (h, ) = + 17

() 2v(y — pn) 2y a7

and for any given K > K;(h,~), let

Co  2(v = pn) (Csv + hCAN (L)) } '

K+1 I (L)

do > max{

(18)
Then under the protocol given by (3), (6) and (7) with the (2K +
1)-level uniform quantizer (4) and the scaling function g(t) =

goy", the closed-loop system (12) satisfies
Jim a;(¢) Zx] i=1,2....N (19
and
o(t NgohAn(L
oo 7' 29(Y = pn)

where §(t) is the consensus error defined by (8). Furthermore,

Tasym < 7, Where
1X(0) = In X (0)l,

which is defined as convergence rate of average consensus
([35D).

Proof: Let go be chosen as in (18). By (12), noting that
LJN = JN[: = 0 and

sup

Tasym -
X(0)#J x5 X (0) e

X(t+1) = X(t) = (I + hL)e(t) — hL(t)
we have
§(t+1) = (I — hL)8(t) + hLe(t),
e(t+1) = (I + hC)e(t) — hL5(t)
~9()Q (585 (T + hL)e(t) - hes(1)))
(22)
Let )
w(t) = @6(0 (23)
A1) = —elt) 4)

)

—~
o~

~
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Then from (22) and g(t) = go7y’, we get

yw(t+ 1) =(I — hL)w(t) + hLz(t),
vz(t+ 1) = (I + hL)z(t) — hLw(t)
— QI+ hL)z(t) — hLw(t)) (25)

which can be written as

w(t 4+ 1) =y I — hL)w(t) + v *hLz(t),

2(t+1) =y A(t) (26)
where
A(t) = (T+hL)z(t)—hLw(t)—Q (I + hL)z(t) — hLw(t)).

(27)
Now we claim that if a (2K + 1)-level uniform quantizer (4)
with K > K;(h,~) is applied, then the quantizer will never be
saturated. Indeed, by (3), (6) and (10), we know that X (0) =
Using Assumption A2) and (18), we have

Cy
12(0)[le < — (28)
90
and
(I + hL)z(0) — hLw(0)]| = ‘ X(0) < & <K+ l
90 |leo 90 2

Hence, when ¢t = 0, the quantizer is unsaturated. For any given

nonnegative integer k, suppose that when ¢t = 0,1,...,k, the
quantizer is not saturated. Then, we have
1
sup [A@)]. < 5
0<t<k
This together with (26) gives
1
sup 2l < 5o (29)
1<t<k+1 vy

Since £ is symmetric, we can take the unitary matrix 7' =
[(1/V/N), ¢, ..., ¢n] defined by ¢ £ = X;¢T,i = 2,...,N.
Let w(t) = T~ 'w(t) = TTw(t) and decompose w(t) =
[@1(t), @T(t)]" with a scalar @ (¢). Then @y (t) = 0

Wyt + 1) = diag <—1 — }?Q(L),...7 1= hAntk) hi‘N(ﬁ)> Wy (t)
4y h¢TL2(t), t=0,1,... (30)
where ¢ = [qﬁz, ,ON]-

Denote Pﬂ,_yh = dlag((l —hXa (L) /7, ..
From (30), it follows that:

= [i% (0) + 7 h[P,

bl qﬁTLz t—i),

(1=hAN(L))/7-

]t+1~

@t +1) = wlfoT L2(0)

+v~th Z[

where Zi:o(') is defined as 0, when [ < 0. Thus, for the time
instant ¢ = k + 1, noting that wy(t) = ¢Tw(t) and w(t) =
¢pws(t), we have

w(k +1) = $[Py a7 w(0) + 7 h [Py, 0] ¢" L2(0)
k

-1
+y 7 he Y [Poal'dT La(k — i), (32)

=0

t=0,1,... (31)

Now we estimate the three terms on the right-hand side of
the above equation, separately. For the first term, noting that

llpll2 = 1 and ||z]|oo < ||z|l2 € VN||2||so, for any N dimen-
sional vector x, we have

412, 6T w()]| < (6121567 | )1l

< YN8l (_h)’““

- 9o v
\/_||5( Moo (m)

9o Y

For the second term in (32), using (28), vy € (pp, 1) and | L]z =

An (L), we have

(33)

[yt e 0], < LRGN ()"

govy Y
(34)
Similarly, for the last term in (32), by (29) and noting that
el _ (ph )’“
Z[P"/,h] < Z ”P ,h”2 _ Pr
i=0 ¥
we have
k-1
Y h Y [Pyl 6T Lok — i)
i=0 2
k
NhAy
2v(7y — pn) gl

Then by Assumption A1), 7 € (pu, 1) and (32)-(35), we have
NC hvVNC AN (L
||w<k+1>||2gmax{f 1+ N CaAn (L)

goy

h/NAy(L) . @6
2v(v = pn)
This together with (29) and (18) leads to

(I+hL)z(k+1)—hLw(k+1)|
SN AhL)z(k+ 1)l oo +hIL]l2 [[w(E+1)],
SN +hL) || I2(k+ D)o +h 1Ll [Jw(E+1)],
< (1+2hd”) ||2(k+ 1) +RIILl2 [Jw(k+1)],
< 1+22hd* +hAn(L)

X

- { VNCsy+hVNC AN (L) VNhAN(L) }

g0y " 29(v—pn)

=M;i(h,v)< {Ml(h,v)—%J +g
1

1
So when t = k + 1, the quantizer is also unsaturated. There-
fore, by induction, we conclude that if a (2K + 1)-level uniform
quantizer (4) with K > K, is applied, then it will never be sat-

urated.
Noting that ||w(0)]|ec < Cs/go, by (36) and (18), we have

< max { Cs h\/_)\N( ) } < 0

38

sup [[w(t)||,
>0
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Thus, by the definition of w(t) and 0 < v < 1, we get
lim 16(0)].. = 0.

t—oo

This together with (13) gives (19).
From (32)—(35), noting that §(¢) = goy'w(t), we have
18(k + 1)[ly < 118(0)]l5 (pr)* + V NIy CoAn (£)(pn)"*
NgohAn(L
n \/_90 N( )’yk.
2v(y — pn)

This together with v > pj leads to (20).
Similar to (32)—(35), we have

[16(k + D)l hVNCaAy (L)
[16CO) I,

O,
hgoAn(L)VN
O —py ) "0 70

which together with v > p;, leads to

6+ DI [ _haodn(OVE
) <! {2||6<o>||2<v—ph>”}

< (pn)" + (pn)"

+In(14+0(1)), k— oo
=kln(y)+ O(1), k — occ.
Thus
=T
iy (106D
k—oo \ [|6(0)]l;
1
~ lim exp{ ! m(”‘“’” ”'2)}
A U R TO] B
1
<op{ Jim 11 () + 001}
=7, Vo(0)#0.
By this and the definition of 7asym, We get ragym < 7. O

Remark 6: Assumption A2) says that the upper bound of the
initial states and the initial consensus error are both known. If
the bound C,, of the initial states is known, then max; |6;(0)| <
2C;.. Thus Assumption A2) holds if the following assumption
holds:

A2") max; |2;(0)| < C,, where C,, is a known nonnega-
tive constant.

But we use Assumption A2) rather than A2’), due to the fol-
lowing considerations: 1) In many cases, the bound of the ini-
tial consensus error may be much smaller than that of the initial
states. 2) From the proof of Theorem 3.1, it is shown that the
upper bound of the initial states and the initial consensus error
have different impacts on the dynamic evolution of the scaled
consensus error w(t). If the upper bound of the initial consensus
error is known a priori, then the associated estimates can be ob-
tained more accurately. O

Remark 7: Here, the scaling function g(t) is designed off-
line. By Lemma A.2 and the property of Laplacian matrix, we
have d* < An(L) < 2d*, thenby 0 < v — p, < 1, we know
that (18) holds if

C.  2(Cs+2hd*C,)
go > max K—i—%’ hi- .
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By the above inequality, the choice of gy requires the knowledge
of the upper bound of the initial states C, and the degree of the
communication graph. This is a conservative selection, and in
practice, smaller gg may be available. O

Remark 8: Theorem 3.1 says that by using a scaling func-
tion decaying exponentially and a [log, (2K (h,~))]-bit uni-
form quantizer, the protocol (3), (6) and (7) can ensure average
consensus to be achieved asymptotically. It is worth pointing out
that for any given h and ~, the bit number [log, (2K (h,v))] is
a conservative estimate, and in practice, fewer bits may be re-
quired. However, the number K (h, ) gives us some intuitive
clues on the relationship between the number of bits required
and the control gain h and the scaling factor ~. O

Remark 9: Theorem 3.1 gives an estimate for the conver-
gence rate of the consensus. The smaller the +, the faster the
consensus error converges to zero. Note that y can be made
arbitrarily close to pp, which is the convergence rate for the
case with perfect communication ([35]). From Theorem 3.1, it
is shown that a smaller -y, namely a faster convergence rate, re-
quires more bits to be communicated, and when v — pj, the
required number of bits goes to infinity. O

B. Probabilistic Analysis

From the proof of Theorem 3.1, it can been seen that the quan-
tizers of all agents are unsaturated, then it is shown that the con-
vergence of the consensus error §(¢) is no slower than O(~").
This result is based on the worst case analysis, since the upper
bound of the quantization error ||A(#)]||, which is 1/2, is used.
If the quantization errors are modeled as stochastic noises uni-
formly distributed on [—1/2, 1/2] asin [15] and [16], then we can
show that the mean-square-root consensus error / E||§()||3
converges to zero asymptotically, and the convergence rate is

just O(~h).
Denote
1
eqlt) = o35 (U + RE)e(t) — hea(r)
—Q (% (T + h)e(t) — hﬁé(t)))

which is the vector with the th component as the quantization
error of agent 7. Then the closed-loop system (22) can be written
as

8(t+1) = (I — hL)8(t) + hLe(t),

e(t+1) =g(t)eq(t). (39

For a probabilistic analysis, we introduce a stochastic model of
(39)

8,(t+1) = (I — hL)8,(t) + hLes(t),

es(t+1) =g(t)eq, (1) (40)
where {e,, (t),t = 0,1,...} are stochastic noises.

Theorem 3.2: For (40), let {e, (t),t = 0,1,...} be an
N dimensional random vector sequence with Ele,, (t)] = 0
and Eleq, (Heq, (7] = (1/12)I, Eleg, (Heq, ()] = 0,
t # k. 1If L is the Laplacian matrix of a connected graph,
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hoe (0,2/Ax(L)) and g(1) =

go > 0, then
2
lim inf " |:||55(t)||2:| > gohda(£) 41)
t=ee 7' " 2V3/? =0
2
R i Ll V. s PRV
100 t4 T 2V -0}
and T,eym = 7, Where
1/t
E [1X() - In X O)3]
Tasym = sup lim
v X (0)#£Jy X (0) I 1 X(0)—=InX(0)][,
Proof: From (40), similar to (32), we have
6s(k +1) =7 G [P, 415167 6,(0)
+ go’ykh(ﬁ(P%h)k()bTﬁzs(O)
k-1
+ 907" he > (Pyn) ¢t Leg, (k — 1 — i)
i=0

where z5(t) = es(t)/g(t) and 65(0) = 6(0).
In view of the properties of e, (¢), it follows that:

E[8,(k + 1)8,(k +1)7]
= P EFVG(P, ) 97 8,(0)87 (0)p( Py )+ p"
+ 937" B G(Py n)*p" L2 (0 )zs(U)T&b(N ) T
+ 907" T hG(Py ) T L24(0)67 (0)p(Pyn)* T gT

Ly ok-1)
+ 12907 h?
xZ¢ 1) T L (P ) ¢

1=0

(43)

Noting that T ¢ = I, we have
tr [6(Pn) 67 L26( Py 1) " |
v [LO(P, ) 0T (P n) 67 L]
= tr [LH(P,0) (Prn) 67 £]
()" 20(P, )]
> M (L)tr [(Pn)]
| (44)

This together with (43) and ||ﬁ,7h||2 = pn/v < 1leads to

lim inf
t—o0

Sl s 5 o

,72(t+1) = 12 5
__g3h*MN(L)
1292 (v2 = p3)

=0

goy" with v € (pn,1) and  which results in (41). Similar to (44), we have

br [6(Pn) 6T L26( Py 1) " |
< X3 (Ot [@(Pyn) (Pra)'o" |
= A% (L)tr [ (Py)*]
< (N = 1% (£) (”7)

This together with (43) leads to

2
lim su t [H(SS(t i 1)”2] < (N = 1)AX (L)ggy*h?
t—»oop ’72(t+1) - 12
oo 2
Ph
X 7
> (%)
_ (V- 1)ggh? AN (L)

1292 (v2 = pj)
which gives (42). Further, from (41), (42) and the definition of
Tasym> We get Tagym = 7. O

C. Any-Rate Convergence

From Theorem 3.1, it can be seen that if the convergence rate
~v is fixed (i.e., independent of the number of agents), then the
number of quantization levels, 2K (h,v) + 1, will tend to in-
finity as N — oo. However, in practical applications, the bit
rate is usually limited. To satisfy this requirement, we can use
a fixed number of quantization levels at the cost of slower con-
vergence. We have the following result.

Theorem 3.3: Suppose Assumptions A1)-A2) hold. For any
given K > 1, let

2
Qi = {(%ﬁﬂa € <07m>7
B (ar) Milah) <K+ 69

where p,, is defined by (15) and M («, 3) is defined by (17).
Then, (i) Qk is nonempty. (i) For any (h,y) € Q, under the
protocol given by (3), (6) and (7) with g(¢) = goy" and the
(2K + 1)-level uniform quantizer (4), the closed-loop system
(12) satisfies

tlim z;(t) =

1N
Nzxj(ox i=1,2...,N
j=1
where gg is a constant satisfying (18).
Proof:
(i) Noting that
VNaX% (L)  142ad*| 1

S R W R 2

we know that for any given K > 1, there exists a* €

(0,2/A2(L) + An(L)) such that

VN % (L) 1+ 2a%d*
2X2(L) 2

1
<K+ (46)
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By Lemma 3.1, it is known that p,- = 1 —a*A2(L) < 1.

By this and (17), we get

VNa* A3 (L) N 1+ 20*d*
2X2(L) 2

lim M, (a*,v) =
y—1

Then by (46), we know that there exists v* € (pa=,1),
such that

1
Mi(a*,v") < K + 3

Therefore (a*,v*) € Qk, that is, Qx is nonempty.
(ii) For any (h,v) € Qk, by (45), we know that h € (0,2/
AN(£)), 7 € (pn,1), and

1 1
5 < Ml(h,’)’) <K+ 5

Thus, by (16), one gets Ky(h,v) < K, which together
with Theorem 3.1 leads to the conclusion of the the-
orem. ]
Remark 10: From Theorems 3.1 and 3.3, it is shown that as
long as the network is connected, we can always design a dis-
tributed protocol to ensure exponentially fast average consensus
with each agent sending merely one bit of information to its
neighbors at each time step. ]
The set Qi is a plane point set described by three nonlinear
inequalities. Generally speaking, it is difficult to get an explicit
solution of these inequalities. However, by introducing a free
parameter €y € (0, 1), we can get a simple algorithm to choose
(h,v) from Qg for any given K > 1.

Algorithm 1

(i) Choose a constant ¢y € (0,1).
(ii) Choose the control gain h € (0, b (ep)), where

hK(eO)_mm{—)\Z(ﬁ) (D)

+ 20(L)d e + (2K + DN (L)eo(1 — ) "} (47)

2K egA2(L) (\/N)‘?V([’)

(iii) Let v = 1 — (1 — €9)hA2(L).

The result below shows that any pair (h, ) generated by Al-
gorithm 1 belongs to 2 and any point in {2 can be generated
by Algorithm 1.

Lemma 3.2: For any given K > 1, and ¢j € (0, 1), let

Qrceo ={(a, B)|a€(0, hi(€0)), B=1—(1—¢€0)ar2(L)}.
(48)
Then we have

Ok = |J %
€0 €(0,1)

(49)

The proof of Lemma 3.2 is given in Appendix.

Next we use an example to demonstrate the validity of the
proposed consensus protocol and Theorem 3.3.

Example 1: We consider a network with 10 nodes and 0-1
weights, which means that a;; = 1, if (¢,7) € &, otherwise,
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A,=1.7789,1=9.0571,K=1,h=0.0075,y=0.9993,9,=10
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Fig. 1. Curves of states of Example 1 with ~ = 0.0075 and v = 0.9993.

10 ! . ; : :
f ‘ A,=1.7789,1,=9.0571,K=1,h=0.0075,y=0.9947,g,=10

0 200 400 600 800 1000

Time [step]

1200

Fig. 2. Curves of states of Example 1 with 2 = 0.0075 and v = 0.9947.

a;; = 0. The edges of the graph are randomly generated ac-
cording to P{(4,j) € £} = 0.5, for any unordered pair (¢, j).
Here, Ao(£) = 1.7789 and A\1o(L£) = 9.0571. The initial states
are chosen as x;(0) = 4,7 = 1,...,10. The control gain h and
the scaling factor y are taken as 0.0075 and 0.9993 (e = 0.95),
respectively. From (16), we get K1 = 1. The one-bit quantizer is
used. The evolution of the states is shown in Fig. 1. It can be seen
that average consensus is achieved asymptotically with an expo-
nential convergence rate. Then we take y = 0.9947 (ey = 0.6).
The evolution of the states is shown in Fig. 2. Comparing Fig. 1
with Fig. 2, we can see that a smaller «y gives faster convergence.

D. Asymptotic Convergence Rate

In many cases, the number IV of the network nodes is large
and we are concerned about asymptotic properties as N ap-
proaches infinity. In this section, we investigate the asymptotic
performance of the closed-loop system. It can be seen that the
asymptotic value of  has a very compendious expression. In-
stead of a given network topology graph G, what we consider
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is a sequence of connected graphs Gy = {Vn,En, An} with
[Vn| = N, N = 1,2,.... However, for succinctness, the sub-
script N is omitted in the following.

Theorem 3.4: Suppose Assumption Al) holds. Then for any
given K > 1

lim inf(ha’Y) eQx Y

N—o0 exp{_;(f/g%}

=1 (50)

where QN = )\g(ﬁ)/)\N(ﬁ)

The proof of Theorem 3.4 is given in Appendix.

Remark 11: @ is an important physical factor. It is shown
that a network exhibits better synchronizability if @y is large
([30]). Theorem 3.4 shows that in some sense, the asymptotic
convergence rate we can achieve using the proposed protocol is
O(exp{—(KQ%/(2V/N))t}). Therefore, the asymptotic con-
vergence rate is closely related to the number of the quantiza-
tion levels, the scale and the synchronizability of the network.

Note that we do not claim that the proposed protocol given
by (3), (6) and (7) provides the optimal convergence rate among
all possible coding and decoding schemes. Theorem 3.4 only
gives the asymptotic highest convergence rate under the pro-
posed protocol. It would be an interesting future topic to find
the fundamental upper bound for convergence rate among all
possible coding and decoding schemes. O

IV. MINIMIZATION OF COMMUNICATION ENERGY COST

Average-consensus protocols can be viewed as distributed
least-mean-square estimation algorithms in sensor networks
([36]). Limited power is perhaps the most critical constraint
for applications of wireless sensor networks. Simulations show
that for a large-scale sensor network, communications between
nodes consume far more power than computation ([37]). For
power saving, reducing the communication load for distributed
estimation is a critical issue. This motivates us to consider
how to minimize the total communication energy cost for
average consensus. Define the convergence time constant as
Tasym = (In(1/ raysm))_l, which gives the asymptotic number
of steps for the consensus error to decrease by 1/e ([35]). For
a (2K + 1)-level quantizer, at each time instant, [log,(2K)]
bits are sent by each sending node and are received by each
receiving node. For simplicity, we assume that the transmission
power and receiving energy cost for each node are the same.
Therefore, if a (2K (h,~) 4+ 1)-level quantizer is used, then the
communication energy of the whole sensor network to achieve
consensus is given by

®(v) = Bu(7) (1N + 2¢2|€])

where Bp(y) = [logy(2K1(h,7))]Tasym, and ¢1 and co are
respectively the energy costs for transmitting and receiving each
bit. This model follows from [38].

It can be seen that minimizing ®(v) is equivalent to mini-
mizing By (7). By Theorem 3.1, we know that

Br(v) < Bi(7)

500 T T T T

450 -

400+
350 -
300

=

=250
200

0.75 0.8 0.85 0.9 0.95 1

Fig. 3. Curves of B}, with respect to v when h = 0.01,» = 0.03 and h =
0.05.

where

Bii(y) = [log, (2K1(h,7))] (In(1/7))~"

which is a function of y for the given network topology G and the
control gain h. The smaller the -, the smaller the (In(1/v))~1,
but the larger the [log, (2K (h,v))]. Minimizing Bj: () with
respect to 7y subject to v € (pn, 1), we can get a good solution
for ~.

Remark 12: Here, we only get a sub-optimal solution of
7, since what we minimize is the upper bound of Bj(y).
If the stochastic model of quantization errors is used as in
Theorem 3.2, and the convergence time constant is defined

as Tasym = (I0(1/Taysm)) ™!, then by Theorem 3.2, we have
By(y) = Bj(vy) and minimizing B; () gives the optimal
solution of .1 O

Example 2: We consider a network with 30 nodes and 0-1
weights, where A2(L£) = 4.7622 and A39(L) = 22.6239. The
curves of B} (y) when h = 0.01, h = 0.03 and h = 0.05 are
shown in Fig. 3. The discontinuity of the curves is due to the
rounding up and down operators. It is shown that the optimized
value of v decreases as h increases.

V. QUANTIZED CONSENSUS FOR EXPANDER NETWORKS

From Theorem 3.3, to ensure average consensus by using any
given [log,(2K)]-bit quantizer, it is sufficient that the control
gain h and the scaling factor v be chosen from

O = {(h,7)|h € <om> ,

— 1
vy€(1—=hA,1), Mi(h,v)< K+ 5}

where
2V Nh2(d*)? 1+ 2hd*
vy = (1= hA)] 2y
and )\, is a positive lower bound of A2(L). Therefore, the choice

of h and v depends on a positive lower bound of the algebraic
connectivity. Generally speaking, the positive lower bound of

Ml(h7 7) =

In this case, ®(y) is defined as the communication energy of the whole net-
work to achieve consensus in the stochastic average sense.
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the algebraic connectivity of a complex network is not known,
however, for an important class of regular networks, it can be
worked out by using other physical parameters.

Definition 5.1: ([39]) The isoperimetric constant or expander
constant of an equally weighted graph G = {V,&, A} on N
vertices is

~

. . [|0F| N
— - ( < —
(9) mm{ 7 FCV, 0<|FI< 5

where the boundary 0F of F is the set of edges with one en-
tremity in F and the other in V — F.

Definition 5.2: ([39]): Let ¢ be a positive constant. A d-reg-
ular graph G = {V, €, A} is called a c-expander, if i.(G) > c.

Expander graphs are highly connected sparse graphs, which
play an important role in designing efficient communication net-
works in computer science ([30], [40]). From Corollary 2.3 of
[41], a key property of a c-expander is

Ao (L) > d—/d? — 2. (51)

For expander networks, we have the following result.

Theorem 5.1: Let G = {V, £, A} be a d-regular c-expander.
Suppose Assumption A2) holds. For any given h € (0, (2d) 1)
andy € (1 — h(d — Vd? — ?),1), let

1
KQ(}L7’V> = \‘MZ(}IH’Y) - iJ +1 (52)
2V Nh2d?
MZ(’%W) = 2 0]
Y[y =1+ h(d-Vd*>-c?)]
14 2hd
+ T (53)
2y
and for any given K > Ks(h,~) let
C,  4hd(d*> + Vd? — 2)(Cs + C)
go > max T 5 .
K + 3 he
(54

Then under the protocol given by (3), (6) and (7) with the (2K +
1)-level uniform quantizer (4) and the scaling function g(t) =
goy!, the closed-loop system (12) satisfies

N
1
lim z;(t) = Nzxj(o), i=1,2...,N. (55
j=1

Proof: Note that for a c-expander, Assumption A1) holds.
From the property of graph Laplacian ([32]), we know that
AN (L) < 2d, then by Lemma 3.1 and h € (0, (2d)~1), we get

pn =1 —hXo(L). (56)
This together with (51), (52), (53), (16) and (17) leads to

By (56), we have

Y= png <1—(1—hAy(L)) < 2hd

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 2, FEBRUARY 2011

which together with hAn (L) < 1, and An (L) > Aa(L) >
d — d? — ¢? gives
2(v = png) (Csy + hC AN (L))
hAn (L)
< 4hd(d + Vd?* — 2)(Cs + Cy)
- hc? '

By this, (54), (18), (57) and Theorem 3.1, we have (55). O
Similar to Theorem 3.3, we have the following theorem.
Theorem 5.2: Let G = {V, €, A} be a d-regular c-expander.

Suppose Assumption A2) holds. For any given K > 1, let

te={ (el (0.57) € (1-ata—VE=E).1).
Mg(a./ﬂ) < K+ %}

where M («, ) is given by (53). Then, (i) 25 is nonempty.
(ii) For any given (h,v) € Q, under the protocol given by (3),
(6) and (7) with g(t) = goy! and the (2K + 1)-level uniform
quantizer (4), the closed-loop system (12) satisfies

N
1
lim z;(t) = Nzxj(m i=1,2...,N
j=1

where gg is a constant satisfying (54).

The proof of Theorem 5.2 is similar to that of Theorem 3.3
and is omitted here.

To choose (h, ) from Q9§ for any given K > 1, we have the
following algorithm.

Algorithm 2

(i) Choose a constant g € (0,1).
(ii) Choose the control gain h € (0, h.(€g)), where

- ) 1
he(€0) = min {ﬁ’

2Kd e
M +2¢0 + (4K + 2)eo(1 — €o)

(iii) Lety = 1 — (1 — eg)h(d + Vd? — ¢2).

Remark 13: A Ramanujan graph G is defined as a d-regular
graph with \2(£) > d — 2v/d — 1. Ramanujan graphs are ex-
panders which achieve the largest possible algebraic connec-
tivity ([39]-[42]). Recently, it was found that in fact, Ramanujan
graphs are close to optimal graphs with the best synchroniz-
ability ([30], [43]). For a Ramanujan graph G with d > 3,
A2(L) > 3 — 2V/2. This property is of particular importance,
since A2(L) is lower bounded, independent of the graph G. So
by Theorem 5.2, for the case with a d-regular Ramanujan graph
with d > 3, we can choose h and =, such that h € (0, h.(ep))
andy = 1 — (1 — €)(3 — 2v/2)h, where

>~ . 1 2K60
hc(eo) =1min ﬁ, N
3_2\/§+2d€0+2(2K—|— 1)d60(1 —60)
for any given K > 1. O
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Remark 14: Since @ < 1, the asymptotic convergence rate
is slower than O(exp{—(K/(2v/N))t}). In [30], it is shown
that entangled networks, which have largest Q5 will typically
be Ramanujian graphs. In [43], it is also shown that Ramanu-
jian graphs asymptotically optimize QQn for a large class of
regular graphs. For a family of d-regular Ramanujian graphs,
Qn > ((d — 2v/d —1)/(2d)). Therefore, the asymptotic con-
vergence rate we can achieve is higher than O(exp{—((K(d —

2/d —1))/(4dVN))t}).

VI. CONCLUSION

In this paper, the average-consensus control problem has been
considered for undirected networks of discrete-time first-order
agents under finite bit-rate communication. Based on uniform
quantization with scaling, a dynamic difference encoding and
decoding scheme is used for the communication between each
pair of agents. A distributed protocol has been proposed, where
the control input of each agent is a weighted sum of the differ-
ence between the estimate of its neighbor’s state and the internal
state of its own encoder. This type of protocol is equivalent to
adding an error compensation term to the original weighted av-
erage type protocol. It is shown that for a connected undirected
dynamic network with first-order agents, no matter how many
agents there are, we can always design a distributed protocol to
ensure that average consensus is achieved asymptotically with
as few as one bit information exchange between each pair of ad-
jacent agents at each time step. It is shown that the asymptotic
convergence rate is related to the number of network nodes, the
number of quantization levels and the synchronizability of the
network.

In this paper, we assume that all agents are synchronized and
the communication channels are noiseless. For future research,
the case with asynchronous protocols, robustness with respect
to packet-loss, link failures and time-delay may be considered,
and the case with noisy digital communication channel is also
interesting.

APPENDIX

Proof of Lemma 3.2: First, we prove that

U QKo C Q.
€0€(0,1)

(A1)
For any (ag, (o) € ere(0,1) Qe C N, there exists € €
(0,1) such that
ao € (0, b () (A2)
and
Bo=1—(1-€)ra(L). (A3)
This together with (47) leads to

and

B € (Pag, 1) - (A5)

From (17) and (A3), it follows that M («o, Bo) = S(o,€),
where:

_ 1+2apd*

T 2[1-(1-¢€f) aoAa(L)]
VNagy(£)

2[1—(1—€5) aora(L)] €5 A2(L£)

_egMa(L)(14+2a0d*) +VNagA) (L)

T 2[1-(1-€5) anra(L)] A2 (L)

S (a0, €)

_|_

(A6)

Note that S(ao,€f) < K + 1/2 is equivalent to ag < a,
where
o = (2Keida(L)) (VNNR(L) + 220 (£)d"

+ (2K + )A3(L)es (1 —€5))
Then by (A2) and (47), we have M1 («g,Bo) < K + 1/2. This
together with (A4), (A3), (AS) and (45) leads to (Al).

Now we prove that

0k C |J Q% (A7)
€0 6(0,1)
For any (o, o) € Qk, by (45), we know that
0<ap< 2 (A8)
Q _
O™ (L) + AN (L)
This together with Lemma 3.1 gives
Pay = 1-— Oéo/\g(ﬁ). (A9)
Denote e = 1 — ((1 — p)/apA2(L)). Then
ﬂo =1- (1 — 66) (YQ)\Q(E). (AIO)

By (A9) and By € (pa,, 1), we have ¢ € (0,1). From (A10)
and (17), it follows that Mj(ag,B0) = S(ao,€p), where
S(a, €) is given by (A6) with € replaced by e,. This together
with My (g, Bo) < K 4+ 1/2 leads to S(ag, €)) < K +1/2.
Note that S(ap, €)) < K + 1/2 is equivalent to

gy < o/K
where
ol = (2Kl Aa(L)) (\/N,\?V(,C) +22(L)d* e
+ (2K + 1)A3(L)e) (1 — €)))

-1

Then by (A8) and (47), we have ay € (0, h%(ef,)). This together
with (A10) leads to (g, Bo) € QK%, that is, (A7) holds. [
The proof of Theorem 3.4 needs the following lemmas.
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Lemma A.1: ([31]): Suppose G is a weighted graph with IV
nodes, and £ is the Laplacian matrix. Then Ao (L) < (N/(N —
1)) min; deg;.

Lemma A.2: Suppose G = {V,E,A = [ai]y,n]) IS a
weighted graph with |V| = N > 2, £ is the Laplacian matrix,
and d* is the maximum degree. Then Ay (£) > (N/(N —1))d*.

Proof: Denote a* = max; ;a;;, and L = a*NI -
a*117 — L. Then it can be seen that £ is a Laplacian matrix.
By Lemma A.1, the properties of Laplacian matrices and the

complementary graph method ([31]), we have

”5||2=1,5T1=0
= s, 8 (@ N - et - £))
2= 3 =
=a’N - min §TTs
[16]l2=1,6"1=0
=a’N - )\2(2)
2o’ N = g min (N~ 1) - degi)
N
:a*N - ﬁ (CL*(N — 1) - maXdegZ)
N
= —d*
N -1

O
Lemma A.3: Suppose Assumption A1) holds. For any given
K > 1,and ¢ € (0,1), let b3 (eo) be given by (47). Define

Pr={610=1—(1—¢€p)hA2(L),e0€(0,1),he€ (0, h}(0))} -
Then

2
inf 4> 1 BA20L)
V€l Kk 2V N)\%V(ﬁ)
Proof: From (47), we have
2K60)\2([,) %
h< ———=, VYhe(0,hx(e)).

Then for any v € I'x with ¢g € (0,1) and b € (0, k% (eo)),
noting that ep(1 — ¢o) < (1/4), we get
_ 2K(1 = ep)eoA3(£) — KM\ (L)
VNIL(L) T 2VNAR (L)

This leads to the conclusion of this lemma.

Lemma A.4: Suppose Assumption A1) holds. For any given
K > 1,and ¢ € (0,1), let h} (o) be given by (47) and vy =
1-— (1 — EO)h)\Q(L) Then

7>1

KM (L)
2(VN + 2K + 3))\% (L)
Proof: From (47) and Lemma A.2, we have

hK(eg)Zmln{m,

inf

<1-
"/GFKV—

(Al1)

2K oMo (L)
VN2 (L) + 2X2(L) + (2K + 1)A3(L) }
. 1 2K g Ma(L)
- { (L) (VN + 2K + 3)A% (L) }
2KegAa(L)
(VN + 2K + 3)X2,(L)
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which together with infhe(oyhf((so))'y = 1 — (1 —

€0)hi (€0)A2(L) gives

2(]. - Go)éoK)\%(ﬁ)
(VN 42K 4 3)A% (L)’

inf
he(0,h} (o))

y<1-

From this, it follows that:

2(1 - 60)60[()\%(,6

inf vy<1- max

v€lK «€(0,1) (VN + 2K + 3)A\%(L)
KM)3(L)
= 1 —
2(VN + 2K + 3))\%, (L)
that is, (A11) holds. O
Proof of Theorem 3.4: By Lemma A.3, we have

. 1 — Koy
infyer, v 2v/N

VN >1

KO3 = KO2 ’
o {55] o)
where hj.(eo) is given by (47), which together with
KQ%/VN — 0, N — oo gives

lminfmfve—FKKQ’;v > 1. (A12)
< e {-37%}
By Lemma A.4, we have
infyer, ¥ (1 B ;% \/Nrév_l(+3)
VN >1

KQQ — KQQ b -
eXP{_wﬁ} eXP{‘wﬁ}

which together with K Q?V / VN - 0,N — 0o gives

inf
lim sup % <1. (A13)
N —oo exp {_ 2\/% }
By Lemma 3.2 and (48), we know that
inf = inf inf = inf ~.
(h,y)EQK v €0 €(0,1) (h,7)EQK ¢, v velk K
By this, (A12) and (A13), we get (50). O
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